The Gut–Immune Axis in Type 1 Diabetes: Microbial Dysbiosis and Autoimmune β-Cell Destruction

Authors

  • Jeewanjot Singh Department of Pharmacology, Deshbhagat University, Mandigobindgarh, Punjab, India Author

DOI:

https://doi.org/10.64229/q23j9n11

Keywords:

Autoimmunity, Gut microbiota, Intestinal permeability, Microbiome, Type 1 diabetes

Abstract

Type 1 diabetes (T1D) is a chronic autoimmune condition primarily caused by the immune-mediated destruction of pancreatic β-cells, leading to absolute insulin deficiency. While genetic predisposition, particularly within the HLA region, plays a major role in T1D susceptibility, recent research highlights the significance of environmental factors especially gut microbiota in disease onset and progression. The gastrointestinal (GI) tract harbors a diverse microbial ecosystem that influences immune regulation, metabolic processes, and epithelial integrity. Alterations in gut microbiota, or dysbiosis, have been associated with increased intestinal permeability and systemic immune activation, contributing to insulitis and β-cell autoimmunity. Emerging studies, including findings from The Environmental Determinants of Diabetes in the Young (TEDDY) cohort, reveal distinct microbial signatures in children at risk for T1D, often years before clinical diagnosis. These changes are influenced by factors such as diet, antibiotic exposure, infections, and mode of birth. Moreover, interventions like prebiotics, probiotics, and dietary modulation have shown potential in restoring microbial balance and delaying autoimmune onset. Despite growing evidence linking gut health to T1D, challenges remain in distinguishing causal relationships from mere associations. Current and future research is focused on elucidating microbial mechanisms, identifying protective and pathogenic taxa, and designing early-life preventive strategies. This review underscores the complex interplay between gut microbiota and host immunity and suggests that gut-targeted interventions may serve as promising avenues for T1D prevention and management. Altered bacterial populations can weaken gut barrier integrity, allowing microbial and dietary antigens to cross into the bloodstream. This increased gut permeability promotes immune activation: innate immune cells (e.g., macrophages) respond to microbial components and release inflammatory signals, while adaptive immune cells (T cells) become dysregulated. Molecular mimicry (similarity between microbial proteins and pancreatic β-cell antigens) may further drive autoimmunity. Moreover, a depletion of short-chain fatty acid (SCFA) producing bacteria diminishes the induction of regulatory T cells (Tregs), reducing immune tolerance. Together, these mechanisms contribute to the activation and expansion of autoreactive T cells that target pancreatic β cells, leading to their destruction.

References

[1]Han H, Li Y, Fang J, Liu G, Yin J, Li T, et al. Gut microbiota and type 1 diabetes. International Journal of Molecular Sciences, 2018, 19(4), 995. DOI: 10.3390/ijms19040995

[2]Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, et al. Human gut microbiota in health and disease: Unveiling the relationship. Frontiers in Microbiology, 2022, 13, 999001. DOI: 10.3389/fmicb.2022.999001

[3]Pociot F, Lernmark Å. Genetic risk factors for type 1 diabetes. Lancet, 2016, 387(10035), 2331-2339. DOI: 10.1016/S0140-6736(16)30582-7

[4]Chen C, Wang GQ, Li DD, Zhang F. Microbiota-gut-brain axis in neurodegenerative diseases: Molecular mechanisms and therapeutic targets. Molecular Biomedicine, 2025, 6(1), 64. DOI: 10.1186/s43556-025-00307-1

[5]Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genetics, 2007, 39(7), 857-864. DOI: 10.1038/ng2068

[6]Ullah H, Arbab S, Chang C, Bibi S, Muhammad N, Rehman SU, et al. Gut microbiota therapy in gastrointestinal diseases. Frontiers in Cell and Developmental Biology, 2025, 13, 1514636. DOI: 10.3389/fcell.2025.1514636

[7]Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 2022, 7(1), 135. DOI: 10.1038/s41392-022-00974-4

[8]Wang X, Peng J, Cai P, Xia Y, Yi C, Shang A, et al. The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomedicine & Pharmacotherapy, 2024, 179, 117302. DOI: 10.1016/j.biopha.2024.117302

[9]Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut, 1998, 42(1), 2-7. DOI: 10.1136/gut.42.1.2

[10]Yang X, Xie L, Li Y, Wei C. More than 9,000,000 unique genes in human gut bacterial community: Estimating gene numbers inside a human body. PLoS One, 2009, 4(6), e6074. DOI: 10.1371/journal.pone.0006074

[11]Wu K, Xiao Y, Zhang T, Bai Y, Yan M. The role of the gut microbiota and its metabolites: A new predictor in diabetes and its complications. European Journal of Medical Research, 2025, 30(1), 601. DOI: 10.1186/s40001-025-02824-9

[12]Ma ZF, Lee YY. The role of the gut microbiota in health, diet, and disease with a focus on obesity. Foods, 2025, 14(3), 492. DOI: 10.3390/foods14030492

[13]Sasidharan Pillai S, Gagnon CA, Foster C, Ashraf AP. Exploring the gut microbiota: Key insights into its role in obesity, metabolic syndrome, and type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 2024, 109(11), 2709-2719. DOI: 10.1210/clinem/dgae499

[14]Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology, 2009, 136(1), 65-80. DOI: 10.1053/j.gastro.2008.10.080

[15]Wang L, Wang H, Wu J, Ji C, Wang Y, Gu M, et al. Gut microbiota and metabolomics in metabolic dysfunction-associated fatty liver disease: Interaction, mechanism, and therapeutic value. Frontiers in Cellular and Infection Microbiology, 2025, 15, 1635638. DOI: 10.3389/fcimb.2025.1635638

[16]Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778), 1355-1359. DOI: 10.1126/science.1124234

[17]Hagger V, Hendrieckx C, Sturt J, Skinner TC, Speight J. Diabetes distress among adolescents with type 1 diabetes: A systematic review. Current Diabetes Reports, 2016, 16(1), 9. DOI: 10.1007/s11892-015-0694-2

[18]Martyn-Nemeth P, Schwarz Farabi S, Mihailescu D, Nemeth J, Quinn L. Fear of hypoglycemia in adults with type 1 diabetes: Impact of therapeutic advances and strategies for prevention__A review. Journal of Diabetes and its Complications, 2016, 30(1), 167-177. DOI: 10.1016/j.jdiacomp.2015.09.003

[19]Mittal R, Camick N, Lemos JRN, Hirani K. Gene-environment interaction in the pathophysiology of type 1 diabetes. Frontiers in Endocrinology, 2024, 15, 1335435. DOI: 10.3389/fendo.2024.1335435

[20]Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. The Lancet, 2016, 387(10035), 2340-2348. DOI: 10.1016/S0140-6736(16)30507-4

[21]Sommer F, Bäckhed F. The gut microbiota__masters of host development and physiology. Nature Reviews Microbiology, 2013, 11(4), 227-238. DOI: 10.1038/nrmicro2974

[22]Paul JK, Azmal M, Haque ASNB, Meem M, Talukder OF, Ghosh A. Unlocking the secrets of the human gut microbiota: Comprehensive review on its role in different diseases. World Journal of Gastroenterology, 2025, 31(5), 99913. DOI: 10.3748/wjg.v31.i5.99913

[23]Evans-Molina C, Sims EK, DiMeglio LA, Ismail HM, Steck AK, Palmer JP, et al. β Cell dysfunction exists more than 5 years before type 1 diabetes diagnosis. JCI Insight, 2018, 3(15), e120877. DOI: 10.1172/jci.insight.120877

[24]Kulkarni A, Muralidharan C, May SC, Tersey SA, Mirmira RG. Inside the β cell: Molecular stress response pathways in diabetes pathogenesis. Endocrinology, 2022, 164(1), bqac184. DOI: 10.1210/endocr/bqac184

[25]Thomas NJ, Jones SE, Weedon MN, Shields BM, Oram RA, Hattersley AT. Frequency and phenotype of type 1 diabetes in the first six decades of life: A cross-sectional, genetically stratified survival analysis from UK Biobank. The Lancet Diabetes & Endocrinology, 2018, 6(2), 122-129. DOI: 10.1016/S2213-8587(17)30362-5

[26]Marré ML, James EA, Piganelli JD. β cell ER stress and the implications for immunogenicity in type 1 diabetes. Frontiers in Cell and Developmental Biology, 2015, 3, 67. DOI: 10.3389/fcell.2015.00067

[27]Reynolds KA, Helgeson VS. Children with diabetes compared to peers: Depressed? Distressed? Annals of Behavioral Medicine, 2011, 42(1), 29-41. DOI: 10.1007/s12160-011-9262-4

[28]Bielka W, Przezak A, Pawlik A. The role of the gut microbiota in the pathogenesis of diabetes. International Journal of Molecular Sciences, 2022, 23(1), 480. DOI: 10.3390/ijms23010480

[29]Li X, Atkinson MA. The role for gut permeability in the pathogenesis of type 1 diabetes__a solid or leaky concept? Pediatric Diabetes, 2015, 16(7), 485-492. DOI: 10.1111/pedi.12305

[30]Thursby E, Juge N. Introduction to the human gut microbiota. Biochemical Journal, 2017, 474(11), 1823-1836. DOI: 10.1042/BCJ20160510

[31]Gale EAM, Gillespie KM. Diabetes and gender. Diabetologia, 2001, 44(1), 3-15. DOI: 10.1007/s001250051573

[32]Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: A multicentre prospective registration study. The Lancet, 2009, 373(9680), 2027-2033. DOI: 10.1016/S0140-6736(09)60568-7

[33]Moltchanova EV, Schreier N, Lammi N, Karvonen M. Seasonal variation of diagnosis of type 1 diabetes mellitus in children worldwide. Diabetic Medicine, 2009, 26(7), 673-678. DOI: 10.1111/j.1464-5491.2009.02743.x

[34]Chiang JL, Kirkman MS, Laffel LMB, Peters AL. Type 1 diabetes through the life span: A position statement of the American Diabetes Association. Diabetes Care, 2014, 37(7), 2034-2054. DOI: 10.2337/dc14-1140

[35]Mangalam AK, Taneja V, David CS. HLA class II molecules influence susceptibility versus protection in inflammatory diseases by determining the cytokine profile. The Journal of Immunology, 2013, 190(2), 513-518. DOI: 10.4049/jimmunol.1201891

[36]Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens, 2004, 64(6), 631-649. DOI: 10.1111/j.1399-0039.2004.00327.x

[37]Augusto DG, Hollenbach JA. HLA variation and antigen presentation in COVID-19 and SARS-CoV-2 infection. Current Opinion in Immunology, 2022, 76, 102178. DOI: 10.1016/j.coi.2022.102178

[38]Trowsdale J. HLA genomics in the third millennium. Current Opinion in Immunology, 2005, 17(5), 498-504. DOI: 10.1016/j.coi.2005.07.015

[39]Xu YN, Wang Z, Zhang SK, Xu JR, Pan ZX, Wei X, et al. Low-grade elevation of palmitate and lipopolysaccharide synergistically induced β-cell damage via inhibition of neutral ceramidase. Molecular and Cellular Endocrinology, 2022, 539, 111473. DOI: 10.1016/j.mce.2021.111473

[40]Martin TM, Burke SJ, Batdorf HM, Burk DH, Ghosh S, Dupuy SD, et al. ICAM-1 abundance is increased in pancreatic islets of hyperglycemic female NOD mice and is rapidly upregulated by NF-κB in pancreatic β-cells. The Journal of Immunology, 2022, 209(3), 569-581. DOI: 10.4049/jimmunol.2200065

[41]Liu D, Yang KY, Chan VW, Ye W, Chong CCN, Wang CC, et al. YY1 regulates glucose homeostasis through controlling insulin transcription in pancreatic β-cells. Diabetes, 2022, 71(5), 961-977. DOI: 10.2337/db21-0695

[42]Jung EM, Joo SS, Yoo YM. Nanomolar melatonin influences insulin synthesis and secretion in rat insulinoma INS-1E cells. Journal of Physiology and Pharmacology, 2020, 71(5), 705-716. DOI: 10.26402/jpp.2020.5.10

[43]Lee J, Liu R, de Jesus D, Kim BS, Ma K, Moulik M, et al. Circadian control of β‐cell function and stress responses. Diabetes, Obesity and Metabolism, 2015, 17 Suppl 1(01), 123-133. DOI: 10.1111/dom.12524

[44]Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Frontiers in Immunology, 2022, 13, 906258. DOI: 10.3389/fimmu.2022.906258

[45]Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature, 2018, 562(7728), 589-594. DOI: 10.1038/s41586-018-0620-2

[46]Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences, 2007, 104(34), 13780-13785. DOI: 10.1073/pnas.0706625104

[47]Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500(7464), 541-546. DOI: 10.1038/nature12506

[48]Tetz G, Brown SM, Hao Y, Tetz V. Type 1 diabetes: An association between autoimmunity, the dynamics of gut amyloid-producing E. coli and their phages. Scientific Reports, 2019, 9(1), 9685. DOI: 10.1038/s41598-019-46087-x

[49]Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: A case-control study. BMC Medicine, 2013, 11, 46. DOI: 10.1186/1741-7015-11-46.6

[50]van den Bogert B, Meijerink M, Zoetendal EG, Wells JM, Kleerebezem M. Immunomodulatory properties of streptococcus and veillonella isolates from the human small intestine microbiota. PLoS One, 2014, 9(12), e114277. DOI: 10.1371/journal.pone.0114277

[51]Abdellatif AM, Jensen Smith H, Harms RZ, Sarvetnick NE. Human islet response to selected type 1 diabetes-associated bacteria: A transcriptome-based study. Frontiers in Immunology, 2019, 10, 2623. DOI: 10.3389/fimmu.2019.02623

[52]Tuovinen E, Keto J, Nikkilä J, Mättö J, Lähteenmäki K. Cytokine response of human mononuclear cells induced by intestinal Clostridium species. Anaerobe, 2013, 19, 70-76. DOI: 10.1016/j.anaerobe.2012.11.002

[53]Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, Castellano-Castillo D, Moreno-Indias I, Urda-Cardona A, et al. Gut Microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: A case-control study. Diabetes Care, 2018, 41(11), 2385-2395. DOI: 10.2337/dc18-0253

[54]Higuchi BS, Rodrigues N, Gonzaga MI, Paiolo JCC, Stefanutto N, Omori WP, et al. Intestinal dysbiosis in autoimmune diabetes is correlated with poor glycemic control and increased interleukin-6: A pilot study. Frontiers in Immunology, 2018, 9, 1689. DOI: 10.3389/fimmu.2018.01689

[55]Haller D, Holt L, Kim SC, Schwabe RF, Sartor RB, Jobin C. Transforming growth factor-β1 inhibits non-pathogenic gramnegative bacteria-induced NF-κB recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. Journal of Biological Chemistry, 2003, 278(26), 23851-2860. DOI: 10.1074/jbc.M300075200

[56]Altindis E, Vomund AN, Chow I, Damasio M, Kwok W, Unanue ER, et al. Identification of cross reactive insulin immunogenic epitopes from commensal gut microbes. Diabetes, 2018, 67(Supplement_1), 95-OR. DOI: 10.2337/db18-95-OR

[57]Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al. Staging Presymptomatic Type 1 diabetes: A scientific statement of JDRF, the endocrine society, and the American diabetes association. Diabetes Care, 2015, 38(10), 1964-1974. DOI: 10.2337/dc15-1419

[58]Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature, 2018, 62(7728), 583-588. DOI: 10.1038/s41586-018-0617-x

[59]Kemppainen KM, Ardissone AN, Davis-Richardson AG, Fagen JR, Gano KA, León-Novelo LG, et al. Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care, 2015, 38(2), 329-232. DOI: 10.2337/dc14-0850

[60]Zhao G, Vatanen T, Droit L, Park A, Kostic AD, Poon TW, et al. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proceedings of the National Academy of Sciences, 2017, 114(30), E6166-E6175. DOI: 10.1073/pnas.1706359114

[61]Lakhdari O, Tap J, Béguet-Crespel F, Le Roux K, de Wouters T, Cultrone A, et al. Identification of NF-κB modulation capabilities within human intestinal commensal bacteria. BioMed Research International, 2011, 2011, 282356. DOI: 10.1155/2011/282356

[62]de Goffau MC, Fuentes S, van den Bogert B, Honkanen H, de Vos WM, Welling GW, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia, 2014, 57(8), 1569-1577. DOI: 10.1007/s00125-014-3274-0

[63]Martínez-Hervás S, Sánchez-García V, Herrero-Cervera A, Vinué Á, Real JT, Ascaso JF, et al. Type 1 diabetic mellitus patients with increased atherosclerosis risk display decreased CDKN2A/2B/2BAS gene expression in leukocytes. Journal of Translational Medicine, 2019, 17(1), 222. DOI: 10.1186/s12967-019-1977-1

[64]Cinek O, Kramna L, Mazankova K, Odeh R, Alassaf A, Ibekwe MU, et al. The bacteriome at the onset of type 1 diabetes: A study from four geographically distant African and Asian countries. Diabetes Research and Clinical Practice, 2018, 144, 51-62. DOI: 10.1016/j.diabres.2018.08.010

[65]Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal barrier dysfunction, LPS translocation, and disease development. Journal of the Endocrine Society, 2020, 4(2), bvz039. DOI: 10.1210/jendso/bvz039

[66]Kong XN, Yan HX, Chen L, Dong LW, Yang W, Liu Q, et al. LPS-induced down-regulation of signal regulatory protein α contributes to innate immune activation in macrophages. Journal of Experimental Medicine, 2007, 204(11), 2719-2731. DOI: 10.1084/jem.20062611

[67]Huang Y, Li SC, Hu J, Ruan HB, Guo HM, Zhang HH, et al. Gut microbiota profiling in Han Chinese with type 1 diabetes. Diabetes Research and Clinical Practice, 2018, 141, 256-263. DOI: 10.1016/j.diabres.2018.04.032

[68]Harbison JE, Roth‐Schulze AJ, Giles LC, Tran CD, Ngui KM, Penno MA, et al. Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study. Pediatric Diabetes, 2019, 20(5), 574-583. DOI: 10.1111/pedi.12865

[69]Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450. DOI: 10.1038/nature12721

[70]Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, DeRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480), 451-455. DOI: 10.1038/nature12726

[71]Zhang M, Zhou Q, Dorfman RG, Huang X, Fan T, Zhang H, et al. Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterology, 2016, 16(1), 84. DOI: 10.1186/s12876-016-0500-x

[72]Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 2014, 40(1), 128-139. DOI: 10.1016/j.immuni.2013.12.007

[73]Larasati RA, Harbuwono DS, Rahajeng E, Pradipta S, Nuraeni HS, Susilowati A, et al. The role of butyrate on monocyte migration and inflammation response in patient with type 2 diabetes mellitus. Biomedicines, 2019, 7(4), 74. DOI: 10.3390/biomedicines7040074

[74]Dedrick S, Sundaresh B, Huang Q, Brady C, Yoo T, Cronin C, et al. The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis. Frontiers in Endocrinolog, 2020, 11, 78. DOI: 10.3389/fendo.2020.00078

[75]Shao T, Hsu R, Rafizadeh DL, Wang L, Bowlus CL, Kumar N, et al. The gut ecosystem and immune tolerance. Journal of Autoimmunity, 2023, 141, 103114. DOI: 10.1016/j.jaut.2023.103114

[76]Hamilton-Williams EE, Lorca GL, Norris JM, Dunne JL. A triple threat? The role of diet, nutrition, and the microbiota in T1D pathogenesis. Frontiers in Nutrition, 2021, 8, 600756. DOI: 10.3389/fnut.2021.600756

[77]Hagopian WA, Erlich H, Lernmark Å, Rewers M, Ziegler AG, Simell O, et al. The environmental determinants of diabetes in the Young (TEDDY): Genetic criteria and international diabetes risk screening of 421 000 infants. Pediatric Diabetes, 2011, 12(8), 733-743. DOI: 10.1111/j.1399-5448.2011.00774.x

[78]Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. The Journal of Nutrition, 2017, 147(7), 1468S-1475S. DOI: 10.3945/jn.116.240754

[79]Rothe M, Blaut M. Evolution of the gut microbiota and the influence of diet. Beneficial Microbes, 2013, 4(1), 31-37. DOI: 10.3920/BM2012.0029

[80]Yuan X, Wang R, Han B, Sun C, Chen R, Wei H, et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes. Nature Communications, 2022, 13(1), 6356. DOI: 10.1038/s41467-022-33656-4

[81]Wang XQ, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, et al. Gut microbiota as important modulator of metabolism in health and disease. RSC Advances, 2018, 8(74), 42380-42389. DOI: 10.1039/c8ra08094a

[82]Lin K, Zhu L, Yang L. Gut and obesity/metabolic disease: Focus on microbiota metabolites. MedComm, 2022, 3(3), e171. DOI: 10.1002/mco2.171

[83]Cunningham AL, Stephens JW, Harris DA. Intestinal microbiota and their metabolic contribution to type 2 diabetes and obesity. Journal of Diabetes and Metabolic Disorders, 2021, 20(2), 1855-1870. DOI: 10.1007/s40200-021-00858-4

[84]Bell KJ, Saad S, Tillett BJ, McGuire HM, Bordbar S, Yap YA, et al. Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 2022, 10(1), 9. DOI: 10.1186/s40168-021-01193-9

[85]Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers, 2017, 5(4), e1373208. DOI: 10.1080/21688370.2017.1373208

[86]Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11(5), 1463-1482. DOI: 10.1016/j.jcmgh.2021.02.007

[87]Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor signaling and its role in cell-mediated immunity. Frontiers in Immunology, 2022, 13, 812774. DOI: 10.3389/fimmu.2022.812774

[88]Calabrese CM, Valentini A, Calabrese G. Gut microbiota and type 1 diabetes mellitus: The effect of mediterranean diet. Frontiers in Nutrition, 2021, 7, 612773. DOI: 10.3389/fnut.2020.612773

[89]Antonini Cencicchio M, Montini F, Palmieri V, Massimino L, Lo Conte M, Finardi A, et al. Microbiota-produced immune regulatory bile acid metabolites control central nervous system autoimmunity. Cell Reports Medicine, 2025, 6(4), 102028. DOI: 10.1016/j.xcrm.2025.102028

[90]Stojanović I, Saksida T, Miljković Đ, Pejnović N. Modulation of intestinal ILC3 for the treatment of type 1 diabetes. Frontiers in Immunology, 2021, 12, 653560. DOI: 10.3389/fimmu.2021.653560

[91]Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nature Reviews Immunology, 2014, 14(10), 667-685. DOI: 10.1038/nri3738

[92]Min YW, Rhee PL. The role of microbiota on the gut immunology. Clinical Therapeutics, 2015, 37(5), 968-975. DOI: 10.1016/j.clinthera.2015.03.009

[93]Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell, 2014, 157(1),121-141, DOI: 10.1016/j.cell.2014.03.011

[94]Elhag DA, Kumar M, Al Khodor S. Exploring the triple interaction between the host genome, the epigenome, and the gut microbiome in type 1 diabetes. International Journal of Molecular Sciences, 2020, 22(1), 125. DOI: 10.3390/ijms22010125

[95]Del Chierico F, Rapini N, Deodati A, Matteoli MC, Cianfarani S, Putignani L. Pathophysiology of type 1 diabetes and gut microbiota role. International Journal of Molecular Sciences, 2022, 23(23), 14650. DOI: 10.3390/ijms232314650

[96]Baldea I, Iacoviță C, Gurgu RA, Vizitiu AS, Râzniceanu V, Mitrea DR. Magnetic hyperthermia with iron oxide nanoparticles: From toxicity challenges to cancer applications. Nanomaterials, 2025, 15(19), 1519. DOI: 10.3390/nano15191519

[97]Pieścik‐Lech M, Chmielewska A, Shamir R, Szajewska H. Systematic review. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64(3), 454-459. DOI: 10.1097/MPG.0000000000001293

[98]Pearson JA, Wong FS, Wen L. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. Journal of Autoimmunity, 2016, 66, 76-88. DOI: 10.1016/j.jaut.2015.08.019

[99]Brugman S, Klatter FA, Visser JTJ, Wildeboer-Veloo ACM, Harmsen HJM, Rozing J, et al. Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia, 2006, 49(9), 2105-2108. DOI: 10.1007/s00125-006-0334-0

[100]Roesch LFW, Lorca GL, Casella G, Giongo A, Naranjo A, Pionzio AM, et al. Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. The ISME Journal, 2009, 3(5), 536-548. DOI: 10.1038/ismej.2009.5

[101]Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. The ISME Journal, 2011, 5(1), 82-91. DOI: 10.1038/ismej.2010.92

[102]Vatanen T, Kostic AD, D’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell, 2016, 165(4), 842-853. DOI: 10.1016/j.cell.2016.04.007

[103]Paun A, Yau C, Danska JS. Immune recognition and response to the intestinal microbiome in type 1 diabetes. Journal of Autoimmunity, 2016, 71, 10-18. DOI: 10.1016/j.jaut.2016.02.004

[104]Davis-Richardson AG, Ardissone AN, Dias R, Simell V, Leonard MT, Kemppainen KM, et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Frontiers in Microbiology, 2014, 5, 678. DOI: 10.3389/fmicb.2014.00678

[105]Ternák G, Németh M, Rozanovic M, Bogár L. Antibiotic consumption patterns in european countries might be associated with the prevalence of type 1 and 2 diabetes. Frontiers in Endocrinology, 2022, 13, 870465. DOI: 10.3389/fendo.2022.870465

[106]Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. International Journal of Molecular Sciences, 2015, 16(4), 7493-7519. DOI: 10.3390/ijms16047493

[107]Principi N, Berioli MG, Bianchini S, Esposito S. Type 1 diabetes and viral infections: What is the relationship? Journal of Clinical Virology, 2017, 96, 26-31. DOI: 10.1016/j.jcv.2017.09.003

[108]Abela AG, Fava S. Prenatal and early life factors and type 1 diabetes. Endocrine, 2022, 77(1), 48-56. DOI: 10.1007/s12020-022-03057-0

[109]Burrack AL, Martinov T, Fife BT. T cell-mediated beta cell destruction: Autoimmunity and alloimmunity in the context of type 1 diabetes. Frontiers in Endocrinology, 2017, 8, 343. DOI: 10.3389/fendo.2017.00343

[110]Pande AK, Dutta D, Singla R. Prevention of type 1 diabetes: Current perspective. Indian Journal of Endocrinology and Metabolism, 2023, 27(4), 277-285. DOI: 10.4103/ijem.ijem_78_23

[111]Verduci E, Mameli C, Amatruda M, Petitti A, Vizzuso S, El Assadi F, et al. Early nutrition and risk of type 1 diabetes: The role of gut microbiota. Frontiers in Nutrition, 2020, 7, 612377. DOI: 10.3389/fnut.2020.612377

[112]Tillett BJ, Dwiyanto J, Secombe KR, George T, Zhang V, Anderson D, et al. SCFA biotherapy delays diabetes in humanized gnotobiotic mice by remodeling mucosal homeostasis and metabolome. Nature Communications, 2025, 16(1), 2893. DOI: 10.1038/s41467-025-58319-y

[113]Kim TK, Lee JC, Im SH, Lee MS. Amelioration of autoimmune diabetes of NOD mice by immunomodulating probiotics. Frontiers in Immunology, 2020, 11, 1832. DOI: 10.3389/fimmu.2020.01832

[114]Patel R, Sina RE, Keyes D. Lifestyle modification for diabetes and heart disease prevention. StatPearls, 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK585052/

[115]Huang J, Pearson JA, Peng J, Hu Y, Sha S, Xing Y, et al. Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight, 2020, 5(10), e135718. DOI: 10.1172/jci.insight.135718

Downloads

Published

2026-01-05

Issue

Section

Articles

How to Cite

Singh, J. (2026). The Gut–Immune Axis in Type 1 Diabetes: Microbial Dysbiosis and Autoimmune β-Cell Destruction. Disease Prevention and Epidemiology, 1(1), 1-21. https://doi.org/10.64229/q23j9n11