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Abstract

Artificial intelligence (Al)—such as machine learning (ML), natural language processing (NLP) and large multimodal
models-is transforming the field of public-health surveillance, facilitating earlier outbreak detection, the combination of
heterogeneous streams of data, and high-scale signal triage. All these capabilities have potential to enhance timeliness,
sensitivity and geographic coverage of the surveillance systems, especially when used together with nontraditional sources
of information like social media, news media, electronic health records, mobility data and environmental (e.g. wastewater)
indicators. Though, actual implementations reveal significant traps: biased training data may enhance health inequities, bad
data management and inadequate models may harm trust and responsibility, and incomplete validation may lead to false
alarms or missed events. Moreover, the use of surveillance also presents more ethical issues, including privacy and consent
to surveillance and the likelihood of surveillance increasing social evils. The review summarizes the existing evidence and
practice in the technical, ethical and governance aspects of Al in surveillance of public-health. We list recent achievements
and opportunities, methodological and operational issues, and trace the most significant risks. Based on global best practices
and new reporting recommendations, we come up with a realistic roadmap towards ethical, equitable, and successful Al
surveillance implementation. Among the recommendations, there are: strict pre-deployment validation on representative
datasets; model documentation and performance reporting (where applicable) based on TRIPOD+AI/CONSORT-AI,
continuous concept drift monitoring and measures of fairness, robust data governance and privacy-preserving architecture,
stakeholder involvement, including affected communities, and building capacity in low- and middle-income countries
(LMICs). We conclude by outlining priority research and policy measures that are required to ensure the translation of the
technical promise of Al into benefits to the public-health with minimal harms.
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1. Introduction

Public health surveillance can be defined as the systematic and constant gathering, examination, and assessment of health-
related information that is required to plan, implement, and examine the public-health interventions [1]. It is the foundation
of disease prevention and response to epidemics, providing the authorities with the means to discover emerging threats,
track trends, and distribute resources effectively. Traditional surveillance systems-including laboratory-confirmed case
reporting, clinician notifications, sentinel networks, and mortality registries- are impossible to do without [2]. These systems
are however prone to delays in reporting, incomplete capture of data as well as lack of spatial resolution especially in low
resource environments or when dealing with rapidly changing outbreaks. With the rising physical population, mobility, and
the complexity of epidemiology of infectious and non-communicable disease, conventional methods are becoming less and
less effective at delivering timely and granular information [3]. It is on this background that the last twenty years have been
characterized by the blistering development of artificial intelligence (Al) and machine learning (ML), which provide new
tools to enhance and supplement the classical surveillance mechanisms [4]. Al-based systems are capable of processing a
wide variety of diverse and large streams of data, including electronic health records (EHRs), syndromic surveillance feeds,
environmental, genomic and mobility and digital trace data, at scales that would be impractical with a manual process [5].
First mover event-detection systems like HealthMap and BlueDot had shown the ability of natural language processing
(NLP) and real-time web crawling to detect unusual disease signs ahead of official warnings, even in the early phases of
recent outbreaks of diseases worldwide [6]. Similarly, wastewater metagenomic sequencing may be combined with ML-
based nowcasting models to demonstrate the potential of tracking the level of prevalence of each pathogen at the
community level, in order to detect trends related to transmission patterns early, and optimize the use of resources [7,8]. In
spite of these developments, there are methodological, operational, ethical and sociopolitical concerns that Al introduction
into surveillance systems evokes. Issues related to data quality and representativeness, bias in algorithms, privacy concerns,
the lack of transparency of complicated models, and possibilities of the unintended harms or misuse are raised [9]. Unless
managed responsibly and designed with equity in mind, Al-based surveillance could either support current inequities or
destroy trust in the government. Thus, this review generalizes the existing information on the use of Al in public health
surveillance, outlining its prospects, constraints, and gaps in implementation. Our additional suggestion is a comprehensive
roadmap of ethics-equity which focuses on responsible design, high-quality validation, transparent reporting, community
involvement, and strong supervision. It specifically targets population-level surveillance systems, and not clinical decision-
support systems and gives more emphasis on real-world utility, fairness, and sustainable governance.

2. Scope and Methods

In this case, a narrative review design was chosen as the solution to the fast changing, interdisciplinary, and policy-oriented
focus on Al in the field of public health. This method allows synthesis of conceptually heterogeneous evidence types, such
as policy documents, methodological frameworks, empirical studies and illustrative case examples, which do not lend to
systematic review or meta-analysis.

This review was based on four primary domains of literature: (1) international guidance documents on Al and health; (2)
recent methodological and empirical reviews of Al in public health; (3) reporting, evaluation, and governance standards of
Al (e.g., TRIPOD+AI); and (4) case studies and commentaries on Al in high-impact academic and public health journals.

PubMed, WHO repositories, major public health journals and digital health journals, along with selected grey literature
sources, such as Healthmap and BlueDot, were searched specifically to identify the literature. Search terms entailed Al plus
ML combined with such keywords as public health, disease surveillance, ethics, bias, governance, and reporting standards.
They focused on the recent publications to capture the dynamic policy environment.

The inclusion criteria included English-language publications that covered Al applications that were relevant to population
health, surveillance, ethics, evaluation, or governance. The criteria of exclusion were: the studies were restricted to clinical
decision-making with no public health consequences, the highly technical articles that did not provide the contextual
analysis, and irrelevant or obsolete sources.

As the narrative review approach implies, source quality was determined qualitatively by the authority of the authority
issuing it or the journal, reporting transparency, applicability to real-life health application, and input to the knowledge of
ethical, methodological, or governance issues.

Figure 1 illustrates how an Al system, built on ML, NLP, and large multimodal models, connects to global data sources.
Insights from these Al tools are then delivered to a clinician working on a computer, supporting clinical decision-making.
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Figure 1. Conceptual overview of Al-enabled public-health surveillance and clinical decision support.
3. What is "AI" in Surveillance? Data, Models, and Pipelines

Al in public-health surveillance denotes effective computational systems that can consume, process, and make inferences
about large, heterogeneous, and usually unstructured data to signal disease, predict trends, or detect anomalies [10]. In
contrast to classical statistical surveillance tools that use fixed indicators and structured data, Al tools can use heterogeneous
data and identify nonlinear, complex trends that might be antecedents to the occurrence of observable epidemiological
changes [9,10]. Figure 1 illustrates the transformation of public health surveillance by Al.

3.1 Data Sources

Surveillance systems assisted by Al are based on a wide range of streams of data [11]. The high-specificity information
available on confirmed or likely cases is provided by clinical sources, such as EHRs, the outcomes of laboratory tests, the
patterns of pharmacy dispensing, and radiological results [12]. Earlier, although less specific indicators of symptoms at
population level, are syndromic data, e.g., emergency department (ED) chief complaints, telemedicine consult logs, or over-
the-counter medication sales [13]. In addition to conventional health-sector data, the new surveillance is using more and
more digital trace data, such as internet search queries, social-media posts, news stories, and online engagement statistics,
which can represent an emerging popular alarm, symptom reporting, or behavioural shifts [14]. Indirect environmental data,
especially the wastewater viral loads, metagenomic-sequencing data, meteorological, and satellite-based remote-sensing
indicators, give valuable but indirect information on pathogen distributions and ecology of vectors [15]. Moreover, the
mobility and transportation data, including anonymized mobile-phone location history or airline passenger traffic, can be
used to train models that describe the dynamics of spreading the disease and define the risky transmission corridors [16].
Formatted public-health reports such as notifiable disease registries and outbreak summaries are also considered a backbone
and even can be used as a ground-truth to train or validate models [17]. Although these nontraditional data sources provide
better sensitivity in detection, nontraditional datasets may be highly noisy, biased in demographics, or even time-varying,
which requires preprocessing and calibration [18].

3.2 Models and Approaches

Modern surveillance is based on a number of Al and ML practices [19]. Case prediction, nowcasting or classification Case
prediction Case prediction Case prediction using supervised learning models, including gradient boosting machine, random
forests, or deep neural networks, are commonly applied in situations where training data labelled with case outcomes are
available [20]. The approaches that are not controlled such as clustering algorithms and anomaly-detection framework are
particularly helpful in the detection of surprising patterns without a predetermined case label-important to clarify emerging
pathogens [21]. To identify early outbreak indications, the NLP techniques are used to extract event-relevant data, which
has been obtained on unstructured text sources in order to enable automated scanning of global news feeds, scientific
publications, and social-media posts [22]. The latest developments in transformer-based architectures and large language
models have made significant gains in the capabilities of detecting nuanced semantic hints, inference of epidemiologically
significant entities, and a combination of multilingual data streams [23]. New hybrid models that combine mechanistic
epidemiological models with the uses of ML enhance the accuracy of predictions without compromising on the
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interpretability and domain relevancy. As an example, mechanistic models are used to describe the dynamics of
transmission and ML modules are used to learn residual patterns (e.g. behavioral fluctuations or reporting delays) [24].
Multimodal deep-learning networks also increase the power of analysis by integrating text, numeric, genomic, and image
data, making it possible to have multidimensional situational awareness [25].

3.3 Operation Procedures and Pipelines

Al surveillance systems must be based on powerful end-to-end pipelines to be able to operate in the real-worlds of the
public-health industry [26]. These start with data ingestion, harmonization and preprocessing such as de-duplication,
normalization, outlier management and metadata integration. Rigorous cross-validation, external testing and calibration are
then required to carry out model training and validation to deal with sampling bias and temporal drift [27]. Human-in-the-
loop triage is generally included in operational deployment, as epidemiologists study Al-generated alerts, perform threshold
adjustments and provide feedback, which is used to improve the model iteratively [28]. Constant checking is required to
identify the declining performance caused by altering reporting practices, new variants, or the sociotechnical change [29].
Last but definitely not least, the computational outputs are translated into actionable information by means of accessible
interfaces-dashboards, APIs, automated alert systems-that are consumed by the professionals working in the fields of
public-health [30,31]. In general, Al in surveillance is a developing system of data ecosystems, analytics, and operational
procedures, which should be well combined to produce timely, reliable, and equitable intelligence on public-health. Figure 2
illustrates this.

Model Human-in-Loop Public-Health Interface
Training and Triage Professionals
Vaiidation
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Figure 2. End-to-end human-in-the-loop Al framework for public health surveillance and decision support. The pipeline begins with data
ingestion (de-duplication, normalization, outlier management, metadata integration), followed by model training and validation with
attention to cross-validation, external calibration, and temporal drift. Model outputs then undergo human-in-the-loop triage and are
delivered to public-health professionals through dashboards and automated alert systems, all governed by overarching operational
procedures and pipelines.

4. The Promises: Why Al Matters to the Field of Public Health

Traditional public-health surveillance systems have been based on manual reporting, sentinel networks, and laboratory
confirmation that, although dependable, are all necessarily limited by delays and lack of coverage and resource-lightness
[32]. Al provides a possibility to complement these traditional methods with increasing the speed, scale, and depth of the
population-health monitoring [33]. The increased interest toward Al-enabled surveillance by public-health agencies is based
on a number of core promises as highlighted in Figure 3.
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Figure 3. Al-enabled data integration for early public health hazard detection and governance. The integration leverages ML, NLP, and
large multimodal models draw on both traditional and nontraditional data sources to improve the timeliness, sensitivity, and geographic
coverage of surveillance. These capabilities enable early detection of public-health hazards, which must be accompanied by careful
ethical, technical, and governance considerations.

4.1 Swift Detection and Increased Coverage of Observation

With Al systems, it is possible to detect events much earlier, and the coverage of observations is significantly increased,
which is impossible with the use of traditional methods only. In contrast to traditional reporting systems, which require
providers to submit reports or periodic surveys, Al is able to constantly take in and process vast nonhomogeneous data
streams including news media, social-media noise, clinical data, emergency-department reports, digital search histories, and
sensor data of the environment [34]. These systems have the capability of extracting weak and distributed signals that would
be concealed by humans in the process of manually text mining, anomaly detection, as well as trend extraction. In reality,
hybrid systems which incorporate automated analytics with expert epidemiological assessment have demonstrated that, in
many cases, this type of model may predict upcoming events days or even weeks before the manual channels [35]. This
time advantage can develop a time-critical moment of initial risk evaluation, quick field research, and pre-emptive
communication, which may reduce the magnitude and effects of outbreaks.

4.2 Situational Granularity and Targeting

Al is associated with enhanced spatial, temporal, and population situation granularity. The contemporary machine-learners
are capable of combining various streams of information, including human mobility patterns, meteorological information,
ecological measurements, regional demographic characteristics, and case report information to produce finescale risk and
transmission maps [32]. Such a degree of detail justifies more specific and commensurate action by the public health. As an
illustration, a local vaccination plan, a work on vectors control, environmental clean-up operations, or a particular
community outreach in particular neighbourhoods or sub-populations can be informed by risk-stratified models [36,37]. The
changes in hotspots, seasonality, and context-specific vulnerabilities can be reflected in dynamic models that change over
time as new data is received. This in principle enables the shift of public-health responses towards less general and more
focused and context-specific interventions that are more preventive than reactive in nature.

4.3 Scale, Automation and Workload Offloading

Another potential benefit of Al is its ability to expand the surveillance capabilities and automate the routine analytic
procedures. Since epidemic events tend to produce such huge amounts of digital data that people struggle to handle them,
automated triage tools can be used to prioritize signals based on epidemiological relevance, raise concerns about anomalies
to be examined by experts, and eliminate noise [9,38]. Such abilities are especially vital when large-scale events that have a
lot of information occur like a pandemic, disaster related to climate, or a mass gathering where the incoming data volume
and speed are higher than the processing capacity of human beings. Limited personnel are then able to be engaged in higher-
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order tasks like verification, contextual interpretation, communicating with the stakeholders and decision-making, than in
cleaning up and coding and aggregating data manually [39]. Scalable Al tools can be used in resource-constrained
environments to offer more scale to the analytic capacity to subnational levels, where trained epidemiologists are in short

supply [40].
4.4 Data Combining and Identifying New Indicators

Al can as well be used to bring together data and detect novel indicators that would otherwise not be easily identified
through manual techniques. The combination of wastewater monitoring, genomic sequencing, digital mobility information,
pharmacy purchase information, wearable devices statistics, and population-level health indicators will allow building
composite indicators that reflect more than one aspect of pathogen transmission or antimicrobial resistance [9,41]. This
multimodal fusion has the potential to demonstrate the emerging biological or behavioural patterns, prior to their
development into recognizable clinical disease. As a case in point, mixed genomic-epidemiological models can monitor the
change of variants and the possible fitness benefits in near-time, whereas the use of wastewater-clinical fusion can detect
silent transmission within the community when testing capacity is limited [41,42]. Equally, pattern recognition through Al
can demonstrate abnormal prescribing patterns, syndrome clusters, or mobility patterns, which can indicate developing
threats and prioritize investigation and devising adaptive surveillance countermeasures [10].

4.5 Planning and Allocation Resource Decision Support

Lastly, the Al can be used to provide strong decision-support solutions to the area of public health planning and resource
allocation [43]. Under various conditions, forecasting models can predict the number of cases, the number of beds needed,
or the geographic distribution to enable the health system to optimize the number of personnel required, bed capacity, and
stock levels of critical commodities like oxygen, vaccinations, and therapeutics. At the population-health level, Al-based
analytics would help coordinate cross-jurisdictional responses since this would indicate potential spillover between regions,
where there is a weak point in a supply-chain, and where scarce public-health resources are rationally distributed during
emergencies [32]. Tools based on scenarios may assist decision-makers to appreciate the trade-offs between alternative
intervention strategies and predict downstream effects. Such tools when properly validated, clearly communicated and put
into context can enhance the overall resilience and preparedness of public-health systems and enable timely and evidence
based-decisions [44].

5. Practical Applications and Novel Applications

Public health surveillance based on Al has already moved past merely being a promise on paper, with numerous functioning
systems demonstrating the ability of ML, NLP, and data-fusion systems to supplement current epidemiological systems [45].
These applications place emphasis on the possible and real-world challenges of implementing Al in various public health
contexts. Some of these applications are shown in Table 1.

5.1 AI Surveillance Services Based on Events

One of the most prominent and oldest forms of Al usage in detecting outbreaks is an event-based surveillance platform.
HealthMap and BlueDot among other systems automatically scan news sources around the world, social media and expert
forums and unofficial coverage with NLP, geocoding, and rule-based or ML based relevance filters [34]. These platforms
offer almost real-time situational awareness with the aggregation and categorization of signals across thousands of online
sources, which supplements indicator-based surveillance. There is this operational usefulness of automating the detection of
weak and distributed signals across the information ecosystem the way they performed during the emergence of COVID-19,
including surfacing early signs before formal international announcements [46]. The same has been used to recognize
zoonotic spillover reports, atypical clinical presentations, indicators of health-system stress, or indicators of public anxiety,
which could be followed by official detection of clinical cases. More and more of such platforms are being scaled down to
subnational capabilities, such as national surveillance dashboard integration and risk-assessment processes.

5.2 Wastewater Monitoring with AI Enhancers

Another quickly developing area is the wastewater monitoring with the support of ML. Wastewater surveillance has a
population-level sample, which is an aggregation of symptomatic and asymptomatic infection, and is therefore a strong
complement to clinical testing and syndromic surveillance. ML models have the ability to combine longitudinal data on
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wastewater concentration and environmental factors with sewer network attributes, demographical variables and past
infection trends to produce now casts and short term predictions of prevalence rates of pathogens [47]. A number of the
research works conducted in the context of the COVID-19 pandemic demonstrated that ML-enriched wastewater alerts
tended to work out increasing transmission several days prior to case-based surveillance mechanisms, especially in
environments with restricted diagnostic testing capacity or reporting delays [48]. With the expanding use of wastewater
monitoring of pathogens, including influenza, RSV, antimicrobial-resistance (AMR) genes, and enteric viruses, Al-assisted
analytics are likely to be highly valuable in the optimization of sampling strategies, inference of dynamics across a
catchment, the field investigation of hotspots, and in early warning systems under both high-resource and low-resource
settings [49].

5.3 Hybrid Epidemic Forecasting Systems

Another significant new application is hybrid epidemic forecasting systems. Ensemble models, integrating standard
mechanistic epidemic models (e.g. SEIR or agent-based models), with ML parts to tune parameters, address systematic
biases, or use exogenous data sources (e.g. mobility, climate variables and healthcare utilization) are used by many public-
health agencies [50]. These combination methods have proven to provide best results with short-term predictions of
influenza, dengue, and COVID-19 burden, which are translated into practical benefits to hospital capacity planning, oxygen
and drug stocks, and emergency response organization. Concretely, hybrid systems may be integrated with the ordinary
situation reports and decision dashboards to offer situation-based projections as well as uncertainty intervals [S1]. ML has
the potential to be integrated with mechanistic models so that the forecasts can be based on epidemiological theory but be
more adaptable to changing conditions and data environments swiftly [51,52].

5.4 New Al-based Surveillance Applications

In addition to these set examples, there is a variety of new Al-aided surveillance applications being created:

Mobility-informed risk mapping: Combined mobile data, satellite image and ML-enhanced human-movement modelling
can be used to detect probable transmission offshoots, cross-border connectivity, and regionally elevated vulnerability,
notably where data touches on health facilities are scarce [53,54]. These outputs may inform goal-based vaccination, control
of vectors or community outreach.

Genomic epidemiology pipelines: ML methods are being integrated in genomic surveillance to categorize lineages, predict
the phenotypic features of variants (e.g. immune evasion or transmissibility proxies), and find abnormal mutational patterns,
which may indicate an emerging threat [55]. These can be automated clustering and anomaly-detection tools used to
prioritize sequences to be reviewed by experts and characterize them in the laboratory.

Digital phenotyping and sensor-based surveillance: Wearable devices, smartphone sensors, and passive behavioural data are
under investigation to produce individual- and population-level health indicators that could be useful in early detection of
respiratory infections, heat-related illness or mental-health stressors [56]. Although most of these systems are still in the
experimental phase and present serious privacy issues, they demonstrate the widening boundary of the Al-powered data
sources.

Al in AMR surveillance: Al development in AMR surveillance is being implemented via models to identify resistance in
genomic sequences, forecasting resistance phenotypes, and used to predict AMR-risk in the regional scales [57]. Those
systems can be used to complement the old system of laboratory networks by indicating the abnormal resistance profiles
and directing empiric treatment or antibiotic-stewardship interventions.

5.5 Cutting Across Deployment Lessons

Combined, these illustrations depict the emergence of an ecosystem of Al-enabled tools that are an extension and, in other
instances, replacement of traditional surveillance methods. There are operational maturity differences between uses cases:
certain systems are integrated so deeply into regular business processes that they are no longer pilot projects or research
prototypes. Some of the recurring cross-cutting themes are the necessity to have long-term data infrastructure, equity and
representativeness, explicit data protection governance, and a human review and accountability mechanism. On the whole,
Al in surveillance is a dynamic set of data ecosystems, analytical processes, and operationalized processes, which need to be
thoroughly combined and contextually modified to produce the timely, reliable, and fair public-health intelligence [41, 58].
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Table 1. Practical and novel applications of Al in public health surveillance.

29

Application area

Description/mechanism

Examples of AI methods used

Key public-health value

Event-Based
Surveillance
Systems

Al-Enhanced
Wastewater
Monitoring

Hybrid Epidemic
Forecasting
Systems

Mobility-Informed
Risk Mapping

Genomic
Epidemiology
Pipelines

Digital
Phenotyping &
Sensor
Surveillance

Al for AMR
Surveillance

Cross-Cutting
Deployment

Automated scanning of global news,
social media, and expert forums to
detect early outbreak signals using

NLP, geocoding and relevance filtering.

ML analyzes pathogen concentration
trends with environmental and

demographic data to produce nowcasts

and short-term prevalence predictions.

Mechanistic epidemic models combined

with ML to correct biases, tune
parameters, and integrate exogenous
data such as mobility and climate.

Mobile phone data, satellite imagery,

and ML-based movement modelling to

identify transmission corridors and
high-vulnerability areas.

ML automates lineage classification
and predicts phenotypic features of
variants; detects unusual mutational
patterns.

Wearables and smartphone data provide
physiological and behavioral indicators

for early detection of infections or
stressors.

ML predicts antimicrobial resistance
from genomic data and identifies
abnormal resistance trends regionally.

Need for strong data infrastructure,
equity, transparent governance, and

NLP pipelines, rule-based
classifiers, ML relevance
filters, geospatial tagging.

Regression models, time-series
ML, data fusion, anomaly
detection.

Ensemble forecasts, ML-
assisted SEIR models, neural
networks.

Geospatial ML, mobility
modelling, remote-sensing
analytics.

Sequence classifiers, clustering
algorithms, anomaly detection.

Signal processing, behavioral
ML, sensor-fusion models.

Genomic ML, phenotype
prediction models, risk-

mapping.

Governance frameworks,
validation workflows,

Near real-time situational
awareness; early warnings;
supplements indicator
surveillance; supports national
dashboards.

Early detection ahead of clinical
reporting; hotspot identification;
optimized sampling strategies.

Improved short-term forecasts;
hospital and supply planning;
uncertainty intervals for decision-
making.

Supports targeted vaccination,
vector control, and preparedness
in low-data settings.

Faster variant prioritization;
strengthens genomic surveillance.

Population-level and
personalized early warning;
expands non-clinical data
sources.

Complements lab networks;
supports stewardship and empiric
therapy decisions.

Ensures reliability, fairness, data

human oversight across Al surveillance
tools.

protection, and sustainability.

Lessons human-supervision models.

Table 1 provides a structured overview of major practical and emerging applications of Al in public-health surveillance,
summarizing eight domains ranging from event-based monitoring and wastewater analytics to hybrid forecasting and
genomic epidemiology. For each domain, it outlines the core mechanism, the Al methods employed, and the specific public-
health value delivered. The table highlights how AI complements traditional surveillance systems by enhancing early
detection, prediction accuracy, and operational decision-making.

6. Key Pitfalls and Risks

Although there has been strong interest in the implementation of Al in public-health surveillance, the application in the real-
world context is still plagued by challenging methodological, operational, ethical, and equity issues. These risks are not only
hypothetical, as they have been proven several times throughout the health-Al literature and have the potential to destroy
system performance as well as the trust of the population unless an active approach is taken toward them. Key types of risk
gathered in the following subsections should guide the design, estimation, and regulation of Al-enabled surveillance
systems. Table 2 illustrates these key pitfalls.

6.1 Data Quality, Representativeness and Sampling Bias

Surveillance based on Al frequently uses nontraditional, voluminous streams of data that is not based on randomized or
population representative sampling frames, including social media posts, internet search history, mobility data, and
wastewater signals [59]. Users of social-media are also younger, more urban and of higher socioeconomic status;
geographic variations in internet penetration are also modelers of search trends meaning [60]. Environmental and mobility
data sets can only represent certain groups of the population (e.g., smartphone users or customers who are on sewer
connection) [61]. Models which are trained on such distorted inputs will run the risk of systematically characterizing disease
burden or behavioral patterns. Unless addressed with some methodology (weighting, stratification, causal inference), the
biases can also be carried over to subsequent decisions, which may underdetect underserved areas or overestimate well-
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monitored ones. The literature points out the fact that nonrepresentative big data such as their size might replicate or deepen
inequities entrenched in social and infrastructural topography [62,63].

6.2 Algorithmic Bias and Harm is Detrimental

In addition to the data-level biases, algorithmic bias can be created by the model training decisions, label noise (i.e.
incorrectly classified clinical cases), or optimisation functions that do not consider distributional fairness [64]. Using the
example of anomaly-detection systems trained on dense urban data, clusters in cities will be regularly identified and sparse
rural ones ignored [65]. On the same note, the performance of predictive models of influenza-like illness could be poor
among people with poor access to healthcare since labels are based on clinical encounters [66]. The outcome of such
systems leading to distributing resources may be an unequal allocation of vaccines, diagnostics, or interventions to control
vectors. A review of the scholarly literature on health Al states that they find recurrent avenues of unfairness, including
those related to data preprocessing and engineering features, threshold selection, and model updating, which highlights the
importance of fairness auditing, subgroup performance assessment, and participatory design (in collaboration with affected
communities) [67].

6.3 Interpretability and Trust

Deep neural networks and transformer models, which are considered high-capacity ML models, can also be highly
predictive but do not provide end-users with any insight [68]. It is often needed by public-health analysts, epidemiologists,
and policymakers to have clear reasoning, i.e., what data streams were used to raise an alert, how uncertainty was modelled,
and what assumptions the model is driven by. The results produced by Al can be ignored, misunderstood, or even over
relied on without information about the tool of interpretation like feature attribution, uncertainty estimates and model cards.
Under-reliance and over-reliance are both dangerous: analysts can overlook early warning signs because they seem to be of
black-box behavior, or may likewise assume spurious behavior without really questioning it [69,70].

6.4 Evaluation, Validation and Generalizability

Most models of Al surveillance perform well on retrospective or in-sample validations, but significantly worse when used
prospectively. The concept drift-shifts are present in the real-world surveillance: changes in population behavior, pathogen
characteristics, healthcare-seeking patterns, data collection processes, and environmental conditions [71]. The digital
indicators can also be destabilized by changes in coding practices, laboratory workflows, or the interest of people in
symptoms. Consequently, there is still a lack of externally validated evidence on most Al surveillance systems. Strategies
based on the gold standard evaluation such as prospective trials, multi-site validation, calibration studies, and ablation
studies, as well as compliance with reporting standards such as TRIPOD-AI or CONSORT-AI are required and uncommon
[72,73]. Unless subjected to serious scrutiny, policymakers can choose the systems that have not been proved to be reliable
in the infrastructures they will be implemented.

6.5 Privacy, Surveillance Creep and Consent

Surveillance in the interest of the health of the population has always been a matter of a delicate balance between the
welfare of the people and their rights. The tension is compounded by Al which allows the incorporation of granular mobility
traces, social-media content, genomic data, and behavioral indicators that can be sensitive or re-identifiable [74]. The results
of models might indirectly indicate trends of minority or stigmatized groups even in cases where the data are aggregated.
The absence of strong legal and governance structures poses a threat of the so-called surveillance creep whereby systems
that were originally created to serve the public health interests are re-purposed to conduct policing, immigration
enforcement, or even commercial exploitation [75]. Clear data reduction, differential privacy, and rigid purpose constraint
are the main protective measures.

6.6 Operation and Equity Risks of LMICs

The countries of low and middle-income rank among those that have particular issues connected with the infrastructure
discrepancies, a lack of digital literacy, unstable internet access, and absence of data-governance safeguards [76]. Al models
that are trained off the shelf and trained in a high-income setting might not work when implemented in settings that have
varying epidemiological distributions, health-seeking behavior, or reporting behaviors. Relying on external tools that are
created and used may lead to intensifying the technological dependency and the global inequities. Workforce shortages can
also contribute to the inability to monitor models, read outputs and respond to false alerts. Such systemic limitations cause
the probability of model abuse, misuse, or rejection [77]. These pitfalls in combination point to the fact that effective
implementation of Al in public-health surveillance needs more than technical expertise; it needs sociotechnical sensitivity,
ongoing assessment, accountability systems, and equity-based governance strategies.
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Table 2. Key pitfalls and risks of Al-enabled public-health surveillance and potential mitigation strategies.

How it manifests in Al

Possible mitigation/design

Risk domain Main issue . Potential consequences . .
surveillance considerations
Data quality, Non-probability,  Reliance on social-media, Systematic Use weighting/stratification;
representativene skewed data search queries, mobility, and mischaracterization of combine with representative
ss & sampling  sources wastewater data that over- disease burden and surveillance; apply causal-
bias represent young, urban, higher- behaviour; under inference methods; routinely
SES, smartphone or sewer- detection of underserved audit data coverage and
connected populations. areas; overestimation in  population subgroups;
well-monitored settings; transparently report sampling
risk of amplifying limitations.
existing inequities.
Algorithmic Model design and Training on dense urban data ~ Unequal allocation of Fairness-aware objectives and

bias and harm  labeling choices
that encode

unfairness

Interpretability  Black-box models
and trust limit
understanding and
appropriate use
Evaluation, Limited
validation & prospective and
generalizability — external
validation;
concept drift
Privacy, Use of granular,
surveillance re-identifiable or

sensitive data
without robust
safeguards

creep & consent

Operational and Context misfit and

equity risks in  capacity
LMICs constraints in low-
and middle-

income countries

leads anomaly detectors to flag
cities but miss rural clusters;
labels based on healthcare
encounters lead to poor
performance where access to
care is limited; unfair
thresholding and model
updating.

Deep neural
networks/transformers raise
alerts without clear indication
of data sources, assumptions,
or uncertainty; lack of tools
such as feature attribution,
uncertainty estimates, or model
cards.

Models tuned to retrospective
data perform poorly when
underlying behaviour,
pathogens, coding practices, or
data workflows change; sparse
use of prospective trials or
multi-site validation.

Integration of mobility traces,
social-media content, genomic
and behavioural data; models
may infer trends in minority or
stigmatized groups; systems
later repurposed for policing,
immigration, or commercial
use.

Off-the-shelf models from
high-income settings applied in
contexts with different
epidemiology, health-seeking
and reporting patterns; weak
infrastructure, limited digital
literacy, unstable internet, and
fragile data governance;
workforce shortages to monitor
and act on outputs.

vaccines, diagnostics,
and interventions;
systematic neglect of
marginalized groups;
reinforcement of
structural inequities.

Under-reliance (signals
ignored as opaque) or
over-reliance (spurious
patterns accepted
uncritically);
misinterpretation of
alerts by analysts and
policymakers.

Deployed systems may
be unreliable in the
settings where they are
implemented; false
reassurance or
unnecessary alarms;
difficult policy decisions
based on weak evidence.

Breaches of privacy and

autonomy; stigmatization

and discrimination,;
erosion of public trust;
“surveillance creep”
beyond public-health
purposes.

Poor performance,
misuse or rejection of
systems; increased
technological
dependency; widening
global inequities in
surveillance capacity and
outbreak response.

constraints; subgroup
performance assessment;
fairness auditing along the
pipeline (pre-processing,
thresholds, updating);
participatory design with
affected communities.

Embed explainability tools;
provide model cards and
documentation; communicate
uncertainty explicitly; train users
in interpretation; integrate
human-in-the-loop review for
critical decisions.

Conduct prospective and multi-
site validation, calibration, and
ablation studies; monitor for
drift and recalibrate; follow
reporting standards (e.g.
TRIPOD-AI, CONSORT-AI);
require evidence of external
validity before scale-up.

Data minimization and
reduction; privacy-preserving
techniques (e.g. differential
privacy, aggregation); clear
purpose limitation and legal
safeguards; independent
oversight; transparent
governance and consent
processes.

Co-design and local adaptation
of models; investment in
infrastructure and digital
literacy; building local data-
governance frameworks;
sustainable capacity for model
monitoring and response;
equity-focused global
partnerships.

Table 2 outlines some of the key methodological, operational, ethical, and equity-related risks related to Al-enabled public-
health surveillance in six areas including data quality, algorithmic bias, interpretability, evaluation, privacy, and
implementation in LMICs. In each domain, the table describes how the risks in question are revealed in practice, the
possible implications it has on populations and health systems as well as the signs of mitigation tactics to inform the design,
deployment, and governance of Al surveillance tools.
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7. Ethics and Equity Deployment Roadmap

Implementing Al in monitoring health issues in the society needs a structured governance system that is based on ethics and
equity [78]. In contrast, compared to clinical decision-support tools, surveillance systems work at the population level,
sometimes without individual consent and may affect policy decisions, resource allocation, mobility limitations and risk
communication. All these features raise ethical responsibilities and require additional protection. Based on global principles,
such as the WHO ethics and governance guidelines to Al in health and future Al reporting policies, this roadmap combines
practical and viable actions to safeguard the responsible, equitable, and trustful use of Al in the field of communicating
communicable diseases [79]. This is illustrated in Figure 4 and Table 3.

Table 3. Linking risk domains to mitigation actions and governance principles.

Risk domain Key risks Mitigation actions Governance principles
Value and proportionality ~ Low added value; excessive Value-of-information analysis; data Benefit; proportionality
data collection minimization
Bias and inequity Unequal performance; unfair Subgroup evaluation; debiasing Fairness
allocation
Opacity and misuse Loss of trust; repurposing Documentation; reporting standards Transparency
Privacy and data misuse Breaches; stigmatization Privacy-preserving computation; security ~ Privacy
Automation bias False alerts; missed events Human-in-the-loop review Accountability
Performance drift Degraded accuracy Monitoring; retraining Evaluation
Social harm Community mistrust Engagement; communication Participation
Dependency inequity Lack of sustainability Capacity building; partnerships Equity

Table 3 provides an overview of the systematic correlation between key risk areas that are related to Al and data-driven
systems to particular risks, the mitigation measures, and the guiding principles of governance. It also shows how technical,
ethical, and social issues (bias, privacy, automation bias, and performance drift) can be resolved with specific operational
interventions based on such principles as fairness, transparency, accountability, and equity. In general, the table offers a
systematic system of coordinating the risk management habits and responsible governance in the medical field and Al-based
medical practices.

Early identification?
Situational awareness?

/AR v Surveillance Goal
&

(
D[I v Data Sources

Is the available data
representative and complete?

O

i
v Transparency

Fulfill TRIPOD-Alor CONSORT
reporting guidelines

r
v Human-in-the-Loop
Review

Are pilots being actively
monitored?

p
v Governance

Clear ownership,
community engagement

Figure 4. Governance, transparency, and oversight in Al-based surveillance systems. This checklist includes key considerations for
implementing Al-enabled public-health surveillance systems, including clearly defining the surveillance goal, ensuring data sources are
representative and complete, and maintaining transparency through adherence to reporting guidelines such as TRIPOD-AI or CONSORT.
It also emphasizes the importance of human-in-the-loop review to actively monitor pilots and strong governance with clear ownership and
community engagement.
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7.1 Benefits, Proportionality and Necessity

The implementation of Al systems must be based on their ability to add value to current epidemiological practices [80]. The
assessment of value of information and proportionality can be used to evaluate whether or not increased risks and costs are
rewarded by timeliness, accuracy, sensitivity and coverage gains [81,82]. The collection of data must be kept to a minimum,
simpler models used where sufficient, and an increase in the scope of surveillance must be clearly justified by the public
health requirements.

7.2 Fairness and Non-Discrimination

Due to the fact that the results of surveillance are used to allocate resources, fairness is therefore necessary [83]. Early
equity impact assessment must be done to highlight poorly represented or poorly defined populations. The performance of
the model is to be assessed between sociodemographic groups and mitigation measures, including reweighting, debiasing,
calibration, or threshold adjustment should be implemented in case the disparities are observed [84].

7.3 Transparency and Documentation

Transparency is required in trust, accountability and reproducibility. Implemented systems must have well documented
information, explaining data sources, intended use, assumptions, limitations and failure modes [85,86]. Scientific rigor is
enhanced by adherence to reporting standards like the TRIPOD-AI and the CONSORT-AL

7.4 Privacy, Data Governance and Security

The surveillance made by Al should not violate epidemiological value but reduce the threat to privacy [87]. Federated
learning and different privacy techniques like differential privacy can decrease the centralization of data [88]. There must be
explicit data-use agreements, data controls and cybersecurity measures.

7.5 Human Oversight and Accountability

The AI must not be used to substitute epidemiological knowledge. Human-in-the-loop designs allow understanding the
alerts in context and minimize the chances of responding to spurious events [89]. Accountability and learning are aided by
the audit trails.

7.6 Evaluation and Continuous Monitoring

It is necessary to conduct post-deployment monitoring and pre-deployment validation. These should be performance,
calibration, subgroup effects, false alerts and concept drift are to be checked regularly with formal retraining and version
control policy [90].

7.7 Community Engagement and Public Transparency

Community participation, civil society, and involvement of frontline actors in the public health also aid in the process of
identifying the risks surrounding communities and enhancing trust [91]. Good open communication regarding the role of the
system and protection is important.

7.8 Capacity Building and Equitable Partnerships

The deployment of Al sustainably needs local capacity building, infrastructure investments, skills of the workforce, and
controlling data especially in low- and middle-income nations. Fair partnerships need to have equal decision making and
equal distribution of benefits [92-94].

8. Checklist Implementation

Public-health surveillance systems with Al potential should be introduced in a systematic, stepwise manner to maintain
technical strength, ethical accountability, and functional viability, especially in low- and middle-income countries (LMICs),
where resources and institutional capacity tend to be limited [95]. First, the implementers need to identify the purpose of the
surveillance (e.g., early outbreak detection, situational awareness, or short-term prediction), and clearly explain the new
value of Al compared to more basic rule-based or statistical methods. In LMIC context, this is essential to prevent
opportunity costs in which scarce funding and human resources can instead be spent in other important public-health
processes [96]. Capacity building is the key to successful checklist implementation. Instead of depending on vendor services
or short-term contractors, LMICs can focus on modular training local epidemiologists, data managers, health informatics
officers in domains like quality assessment of data, basic literacy in machine-learning, and model interpretation. Examples
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of these in practice are integrating Al training into Field Epidemiology Training Programs (FETPs), using regional centers
of excellence, or using train-the-trainer models to facilitate transfer of skills between districts and ministries. Notably, the
checklist is adaptable to fit the complexity of the models to the available expertise, and interpretable models should be used
in situations where the capacity of advanced data science is scarce, it minimizes inequities in dependencies.

In regards to data governance, data sources like routine health information systems, laboratory reporting systems, mobile
health applications, and community-based surveillance should be listed and evaluated based on completeness,
representativeness, and bias. In LMICs where data fragmentation and missingness are the norm, the checklist ought to be
emphasised on incremental improvement instead of the wide sacking of flawed datasets. There are concrete adaptations,
such as minimum data principles, data-sharing accords between ministries and implementing partners, and privacy-by-
design privacy designs, including data minimization, pseudonymization, and safe local data storage. These solutions will
contribute to safeguarding vulnerable groups, as well as allow the utilization of Al in the event of a lack of elaborate
national data-protection laws [97]. Model selection should focus on transparency and interpretability when the
consequences of surveillance output are of high importance to the public-health or politics. It is especially applicable in
LMICs, where the level of trust in digital systems might be low and the mechanisms of accountability evolve. Pre-
registering analytic plans and reporting in a manner consistent with the TRIPOD-AI or CONSORT-AI guidelines increases
the scientific rigor of the research and ease external review, even where the locally generated evidence is scarce [98]. The
checklist can be adapted in the most practical way by providing the opportunity to comply with the reporting standards in
phases with the primary focus on the main aspects of a model purpose, data sources, and performance metrics.

The partnership models will be relevant to maintaining Al-enabled surveillance in its limited environments. The co-
development can be enforced by fair collaboration between governments, academic centers, regional public-health
organizations and technologies developers instead of transfer of technology. Such cases are public-academic collaboration
to validate models, South-South collaboration to share infrastructure, and agreements to be locally owned by data and
algorithms. There should be a clear demand on the role clarity, data ownership, long term maintenance and exit strategy as
the checklist to avoid vendor lock in and to achieve sustainability [99]. In terms of operation, human-in-the-loop review
mechanism, audit trail, and prospective pilots are necessary but should be scaled accordingly. In LMICs, it can be the
introduction of Al outputs into the current surveillance review meetings, the use of simple dashboards that can be viewed in
low-bandwidth systems, and testing models in the selected districts and then rolled out nationwide. Marginalized groups
(such as rural communities and informal settlements) should be explicitly named in equity and privacy evaluation to make
sure that the deployment of algorithms does not worsen the current health inequalities.

Lastly, good governance structures (including a sense of responsibility in performing control roles, community involvement
and feedback systems) become the cornerstone of responsible execution. Trust and legitimacy in the LMICs can be
established by involving the local leaders, civil society organizations, and frontline health workers in the system design and
evaluation. Through explicit translation of the requirements of checklists into local capacity, and emphasis on
proportionality, participation, and equity, the Al-enabled surveillance systems can be realized with no significant increase in
the existing inequities and a higher possibility of long-term benefit to the population [100].

9. Gaps in Research and Policy Priorities

Notable advancements have been made in the Al use of public-health surveillance, but a number of methodological and
governance gaps remain that prevent the application of Al in ways that are safe, equitable, and effective [101]. It is critical
to address these gaps in order to translate the technical innovation into the sustainable value of public-health.

There are still significant gaps in research. First, there is an urgent demand of methodological frameworks that allow sound
fairness assessment in streamlining and real-time cases of surveillance. The current fairness metrics are generally based on
the notion of static data, when the surveillance systems work in the dynamic environments with concept drift, changing
quality of data, and changing behaviors of population [102]. Second, privacy preserving architectures need to be advanced,
particularly the computationally light, affordable, and low resource feasible solutions [103]. Most of the current methods,
including differential privacy and secure multi-party computation, are either complex or resource-sensitive in nature. Third,
the area does not have standardized benchmark datasets that are privacy-sensitive, allowing a clear comparison of
surveillance algorithms. The reproducible research may be made possible by synthetic or federated benchmark ecosystems,
which would prevent sensitive health information to be disclosed.

Priority of policy is also critical. International norms and agreements that will limit the non-health use of surveillance
produce is in urgent need to ensure that mission creep into policing, migration control or commercial profiling does not
occur [104]. The mechanism of funding should also support mechanisms to build capacity in digital epidemiology, and open,
interoperable infrastructure, which facilitates cross-border data sharing without undermining sovereignty should be
supported by policy makers. Lastly, regulatory authorities should offer more explicit directions to the Al tools in the field of
public health. Instead of strict, uniform rules, risk-based analysis, transparency, and ongoing monitoring should be based on
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the flexible good practice systems [105,106]. These are some priorities that will be used to make Al-powered surveillance
reliable, fair, and consistent with the purposes of promoting health to the population.

10. Conclusion

The review has shown that Al has significant potential to enhance public-health surveillance through providing the ability to
detect population-level health signals earlier, more granular, and responsive. Nonetheless, the results always demonstrate
that technical performance per se is no longer a sufficient reason to deploy. In the absence of stringent validation, fair data
usage, clear reporting, and responsible control, Al-based surveillance systems have the potential to increase the level of
existing bias, weaken trust, and worsen health inequity. Operationalization thus must be done in a manner that is both
technical design and ethically, legally, and socially appropriate. The priorities that were identified throughout the literature
review are proper choice of problems, use of relevant and context-specific data, ongoing model validation, clear
documentation, meaningful human oversight, strong privacy, and long term community involvement. Through an ethics-
and-equity roadmap that is pragmatic and based upon accepted reporting standards (e.g. TRIPOD-AI and CONSORT-AI)
and global principles of public-health (e.g. the use of systems), stakeholders will be able to transform emerging Al
capabilities into surveillance systems that are not only innovative, but also trustworthy, fair, and fit to real-world practice of
public-health. The Als have revolutionary possibilities on the capacity of public-health surveillance to enable more
extensive and timely and more detailed detection of population health indicators. However, technical workability is not
enough; unless strict validation is implemented, fairness ensures, transparent reporting and responsible governance, the Al
systems are likely to enhance negative effects and decrease social confidence. To put operationalized Al surveillance into
practice, there should be coordinated technical, ethical and social solutions: proper problem choice, representative data and
validation, transparent documentation, human control, privacy control and meaningful community participation. Adhering
to an ethics-equity roadmap that is pragmatic and in line with reporting standards (e.g., TRIPOD +AI, CONSORT-AI) and
international recommendations, practitioners can put the chances of Al becoming safer, fairer and more effective public-
health practice higher.
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